Human skin stem cells and the ageing process.

Exp Gerontol. 2008 Nov;43(11):986-97. Epub 2008 Sep 9.
Human skin stem cells and the ageing process.
Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C.
Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany.
In healthy individuals, skin integrity is maintained by epidermal stem cells which self-renew and generate daughter cells that undergo terminal differentiation. Despite accumulation of senescence markers in aged skin, epidermal stem cells are maintained at normal levels throughout life. Therefore, skin ageing is induced by impaired stem cell mobilisation or reduced number of stem cells able to respond to proliferative signals. In the skin, existence of several distinct stem cell populations has been reported. Genetic labelling studies detected multipotent stem cells of the hair follicle bulge to support regeneration of hair follicles but not been responsible for maintaining interfollicular epidermis, which exhibits a distinct stem cell population. Hair follicle epithelial stem cells have at least a dual function: hair follicle remodelling in daily life and epidermal regeneration whenever skin integrity is severely compromised, e.g. after burns. Bulge cells, the first adult stem cells of the hair follicle been identified, are capable of forming hair follicles, interfollicular epidermis and sebaceous glands. In addition, — at least in murine hair follicles — they can also give rise to non-epithelial cells, indicating a lineage-independent pluripotent character. Multipotent cells (skin-derived precursor cells) are present in human dermis; dermal stem cells represent 0.3% among human dermal foreskin fibroblasts. A resident pool of progenitor cells exists within the sebaceous gland, which is able to differentiate into both sebocytes and interfollicular epidermis. The self-renewal and multi-lineage differentiation of skin stem cells make these cells attractive for ageing process studies but also for regenerative medicine, tissue repair, gene therapy and cell-based therapy with autologous adult stem cells not only in dermatology. In addition, they provide in vitro models to study epidermal lineage selection and its role in the ageing process.